Person Re-identification Using Clustering Ensemble Prototypes
نویسندگان
چکیده
This paper presents an appearance-based model to deal with the person re-identification problem. Usually in a crowded scene, it is observed that, the appearances of most people are similar with regard to the combination of attire. In such situation it is a difficult task to distinguish an individual from a group of alike looking individuals and yields an ambiguity in recognition for re-identification. The proper organization of the individuals based on the appearance characteristics leads to recognize the target individual by comparing with a particular group of similar looking individuals. To reconstruct a group of individual according to their appearance is a crucial task for person re-identification. In this work we focus on unsupervised based clustering ensemble approach for discovering prototypes where each prototype represents similar set of gallery image instances. The formation of each prototype depends upon the appearance characteristics of gallery instances. The estimation of kNN classifier is employed to specify a prototype to a given probe image. The similarity measure computation is performed between the probe and a subset of gallery images, that shares the same prototype with the probe and thus reduces the number of comparisons. Re-identification performance on benchmark datasets are presented using cumulative matching characteristic (CMC) curves.
منابع مشابه
Ensemble of Different Approaches for a Reliable Person Re - identification System
An ensemble of approaches for reliable person re-identification is proposed in this paper. The proposed ensemble is built combining widely used person re-identification systems using different color spaces and some variants of state-of-the-art approaches that are proposed in this paper. Different descriptors are tested, and both texture and color features are extracted from the images; then the...
متن کاملSemi-supervised Learning by Fuzzy Clustering and Ensemble Learning
This paper proposes a semi-supervised learning method using Fuzzy clustering to solve word sense disambiguation problems. Furthermore, we reduce side effects of semi-supervised learning by ensemble learning. We set classes for labeled instances. The -th labeled instance is used as the prototype of the -th class. By using Fuzzy clustering for unlabeled instances, prototypes are moved to more sui...
متن کاملOn the Exploration of Joint Attribute Learning for Person Re-identification
This paper presents an algorithm for jointly learning a set of mid-level attributes from an image ensemble by locating clusters of dependent attributes. Human describable attributes are an active research topic due to their ability to transfer between domains, human understanding, and improvement to identification performance. Joint learning may allow for enhanced attribute classification when ...
متن کاملExploiting Dissimilarity Representations for Person Re-identification
Person re-identification is the task of recognizing an individual that has already been observed over a network of video-surveillance cameras. Methods proposed in literature so far addressed this issue as a classical matching problem: a descriptor is built directly from the view of the person, and a similarity measure between descriptors is defined accordingly. In this work, we propose a genera...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کامل